68 research outputs found

    How short is short? Optimum source-detector distance for short-separation channels in functional near-infrared spectroscopy

    Get PDF
    In recent years, it has been demonstrated that using functional near-infrared spectroscopy (fNIRS) channels with short separations to explicitly sample extra-cerebral tissues can provide a significant improvement in the accuracy and reliability of fNIRS measurements. The aim of these short-separation channels is to measure the same superficial hemodynamics observed by standard fNIRS channels while also being insensitive to the brain. We use Monte Carlo simulations of photon transport in anatomically informed multilayer models to determine the optimum source–detector distance for short-separation channels in adult and newborn populations. We present a look-up plot that provides (for an acceptable value of short-separation channel brain sensitivity relative to standard channel brain sensitivity) the optimum short-separation distance. Though values vary across the scalp, when the acceptable ratio of the short-separation channel brain sensitivity to standard channel brain sensitivity is set at 5%, the optimum short-separation distance is 8.4 mm in the typical adult and 2.15 mm in the term-age infant

    Accurate hemodynamic response estimation by removal of stimulus-evoked superficial response in fNIRS signals

    Get PDF
    Objective. We address the problem of hemodynamic response (HR) estimation when task-evoked extra-cerebral components are present in functional near-infrared spectroscopy (fNIRS) signals. These components might bias the HR estimation; therefore, careful and accurate denoising of data is needed. Approach. We propose a dictionary-based algorithm to process each single event-related segment of the acquired signal for both long separation (LS) and short separation (SS) channels. Stimulus-evoked components and physiological noise are modeled by means of two distinct waveform dictionaries. For each segment, after removal of the physiological noise component in each channel, a template is employed to estimate stimulus-evoked responses in both channels. Then, the estimate from the SS channel is employed to correct the evoked superficial response and refine the HR estimate from the LS channel. Main results. Analysis of simulated, semi-simulated and real data shows that, by averaging single-segment estimates over multiple trials in an experiment, reliable results and improved accuracy compared to other methods can be obtained. The average estimation error of the proposed method for the semi-simulated data set is 34% for oxy-hemoglobin (HbO) and 78% for deoxy-hemoglobin (HbR), considering 40 trials. The proposed method outperforms the results of the methods proposed in the literature. While still far from the possibility of single-trial HR estimation, a significant reduction in the number of averaged trials can also be obtained. Significance. This work proves that dedicated dictionaries can be successfully employed to model all different components of fNIRS signals. We demonstrate the effectiveness of a specifically designed algorithm structure in dealing with a complex denoising problem, enhancing the possibilities of fNIRS-based HR analysis

    A wide field-of-view, modular, high-density diffuse optical tomography system for minimally constrained three-dimensional functional neuroimaging

    Get PDF
    The ability to produce high-quality images of human brain function in any environment and during unconstrained movement of the subject has long been a goal of neuroimaging research. Diffuse optical tomography, which uses the intensity of back-scattered near-infrared light from multiple source-detector pairs to image changes in haemoglobin concentrations in the brain, is uniquely placed to achieve this goal. Here, we describe a new generation of modular, fibre-less, high-density diffuse optical tomography technology that provides exceptional sensitivity, a large dynamic range, a field-of-view sufficient to cover approximately one-third of the adult scalp, and also incorporates dedicated motion sensing into each module. Using in-vivo measures, we demonstrate a noise-equivalent power of 318 fW, and an effective dynamic range of 142 dB. We describe the application of this system to a novel somatomotor neuroimaging paradigm that involves subjects walking and texting on a smartphone. Our results demonstrate that wearable high-density diffuse optical tomography permits three-dimensional imaging of the human brain function during overt movement of the subject; images of somatomotor cortical activation can be obtained while subjects move in a relatively unconstrained manner, and these images are in good agreement with those obtained while the subjects remain stationary. The scalable nature of the technology we described here paves the way for the routine acquisition of high-quality, three-dimensional, whole-cortex diffuse optical tomography images of cerebral haemodynamics, both inside and outside of the laboratory environment, which has profound implications for neuroscience

    Dynamic causal modelling on infant fNIRS data: A validation study on a simultaneously recorded fNIRS-fMRI dataset

    Get PDF
    Tracking the connectivity of the developing brain from infancy through childhood is an area of increasing research interest, and fNIRS provides an ideal method for studying the infant brain as it is compact, safe and robust to motion. However, data analysis methods for fNIRS are still underdeveloped compared to those available for fMRI. Dynamic causal modelling (DCM) is an advanced connectivity technique developed for fMRI data, that aims to estimate the coupling between brain regions and how this might be modulated by changes in experimental conditions. DCM has recently been applied to adult fNIRS, but not to infants. The present paper provides a proof-of-principle for the application of this method to infant fNIRS data and a demonstration of the robustness of this method using a simultaneously recorded fMRI-fNIRS single case study, thereby allowing the use of this technique in future infant studies. fMRI and fNIRS were simultaneously recorded from a 6-month-old sleeping infant, who was presented with auditory stimuli in a block design. Both fMRI and fNIRS data were preprocessed using SPM, and analysed using a general linear model approach. The main challenges that adapting DCM for fNIRS infant data posed included: (i) the import of the structural image of the participant for spatial pre-processing, (ii) the spatial registration of the optodes on the structural image of the infant, (iii) calculation of an accurate 3-layer segmentation of the structural image, (iv) creation of a high-density mesh as well as (v) the estimation of the NIRS optical sensitivity functions. To assess our results, we compared the values obtained for variational Free Energy (F), Bayesian Model Selection (BMS) and Bayesian Model Average (BMA) with the same set of possible models applied to both the fMRI and fNIRS datasets. We found high correspondence in F, BMS, and BMA between fMRI and fNIRS data, therefore showing for the first time high reliability of DCM applied to infant fNIRS data. This work opens new avenues for future research on effective connectivity in infancy by contributing a data analysis pipeline and guidance for applying DCM to infant fNIRS data. [Abstract copyright: Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

    Array Designer: automated optimized array design for functional near-infrared spectroscopy

    Get PDF
    The position of each source and detector "optode" on the scalp, and their relative separations, determines the sensitivity of each functional near-infrared spectroscopy (fNIRS) channel to the underlying cortex. As a result, selecting appropriate scalp locations for the available sources and detectors is critical to every fNIRS experiment. At present, it is standard practice for the user to undertake this task manually; to select what they believe are the best locations on the scalp to place their optodes so as to sample a given cortical region-of-interest (ROI). This process is difficult, time-consuming, and highly subjective. Here, we propose a tool, Array Designer, that is able to automatically design optimized fNIRS arrays given a user-defined ROI and certain features of the available fNIRS device. Critically, the Array Designer methodology is generalizable and will be applicable to almost any subject population or fNIRS device. We describe and validate the algorithmic methodology that underpins Array Designer by running multiple simulations of array design problems in a realistic anatomical model. We believe that Array Designer has the potential to end the need for manual array design, and in doing so save researchers time, improve fNIRS data quality, and promote standardization across the field

    Image reconstruction of oxidized cerebral cytochrome C oxidase changes from broadband near-infrared spectroscopy data

    Get PDF
    In diffuse optical tomography (DOT), overlapping and multidistance measurements are required to reconstruct depth-resolved images of oxy- ([Formula: see text]) and deoxy- (HHb) hemoglobin concentration changes occurring in the brain. These can be considered an indirect measure of brain activity, under the assumption of intact neurovascular coupling. Broadband systems also allow changes in the redox state of cytochrome c oxidase (oxCCO) to be measured, which can be an important biomarker when neurovascular coupling is impaired. We used DOT to reconstruct images of [Formula: see text], [Formula: see text], and [Formula: see text] from data acquired with a broadband system. Four healthy volunteers were measured while performing a visual stimulation task (4-Hz inverting checkerboard). The broadband system was configured to allow multidistance and overlapping measurements of the participants' visual cortex with 32 channels. A multispectral approach was employed to reconstruct changes in concentration of the three chromophores during the visual stimulation. A clear and focused activation was reconstructed in the left occipital cortex of all participants. The difference between the residuals of the three-chromophore model and of the two-chromophore model (recovering only [Formula: see text] and [Formula: see text]) exhibits a spectrum similar to that of oxCCO. These results form a basis for further studies aimed to further optimize image reconstruction of [Formula: see text]

    A bilateral N2pc (N2pcb) component is elicited by search targets displayed on the vertical midline

    Get PDF
    The study of visually-elicited event-related potentials (ERPs) detected at posterior recording sites during visual search has enormously advanced our knowledge about how and when visuo-spatial attention locks onto one or more laterally presented target objects. The N2pc component to lateral targets has been pivotal to further our understanding of the mechanisms and time-course of target selection in visual search. However, the N2pc cannot track visuo-spatial attention deployment to targets displayed along the vertical midline. Here, we introduce a new ERP marker (N2pcb component) that is elicited during the selection of such midline targets. In line with retinal and callosal projections from striate to ventral extrastriate cortex, this component reflects an enhanced negativity elicited by midline targets over both posterior hemispheres. By comparing the attentional selection of lateral and midline targets in a singleton search condition and a feature search condition, we show that the N2pcb is triggered at the same time as the N2pc to lateral targets, and shows the same onset latency difference between singleton and feature search. We conclude that the N2pcb and N2pc components reflect the same attentional target selection processes in visual search

    Construction and validation of a database of head models for functional imaging of the neonatal brain

    Get PDF
    The neonatal brain undergoes dramatic structural and functional changes over the last trimester of gestation. The accuracy of source localisation of brain activity recorded from the scalp therefore relies on accurate age-specific head models. Although an age-appropriate population-level atlas could be used, detail is lost in the construction of such atlases, in particular with regard to the smoothing of the cortical surface, and so such a model is not representative of anatomy at an individual level. In this work, we describe the construction of a database of individual structural priors of the neonatal head using 215 individual-level datasets at ages 29-44 weeks postmenstrual age from the Developing Human Connectome Project. We have validated a method to segment the extra-cerebral tissue against manual segmentation. We have also conducted a leave-one-out analysis to quantify the expected spatial error incurred with regard to localising functional activation when using a best-matching individual from the database in place of a subject-specific model; the median error was calculated to be 8.3 mm (median absolute deviation 3.8 mm). The database can be applied for any functional neuroimaging modality which requires structural data whereby the physical parameters associated with that modality vary with tissue type and is freely available at www.ucl.ac.uk/dot-hub

    Frontal haemodynamic responses in depression and the effect of electroconvulsive therapy

    Get PDF
    BACKGROUND: Reduced frontal cortex metabolism and blood flow in depression may be associated with low mood and cognitive impairment. Further reduction has been reported during a course of electroconvulsive therapy but it is not known if this relates to mood and cognitive changes caused by electroconvulsive therapy. // AIMS: The purpose of this study was to investigate frontal function while undertaking cognitive tasks in depressed patients compared with healthy controls, and following electroconvulsive therapy in patients. // METHODS: We measured frontal haemodynamic responses to a category verbal fluency task and a working memory N-back task using portable functional near infra-red spectroscopy (fNIRS) in 51 healthy controls and 18 severely depressed patients, 12 of whom were retested after the fourth treatment of a course of electroconvulsive therapy. Mood was assessed using the Montgomery Ă…sberg Depression Rating Scale and cognitive function using category Verbal Fluency from the Controlled Oral Word Association Test and Digit Span backwards. // RESULTS: Compared to healthy controls, depressed patients had bilaterally lower frontal oxyhaemoglobin responses to the cognitive tasks, although this was only significant for the N-Back task where performance correlated inversely with depression severity in patients. After four electroconvulsive therapy treatments oxyhaemoglobin responses were further reduced during the Verbal Fluency task but the changes did not correlate with mood or cognitive changes. // DISCUSSION: Our results confirmed a now extensive literature showing impaired frontal fNIRS oxyhaemoglobin responses to cognitive tasks in depression, and showed for the first time that these are further reduced during a course of electroconvulsive therapy. Further research is needed to investigate the biology and clinical utility of frontal fNIRS in psychiatric patients
    • …
    corecore